Limita de sir de tipul (x_1+x_2+...+x_n)/lnn
Posted: Sat Oct 13, 2007 12:48 am
Fie \( x_{1}, x_{2}>0 \) numere reale si \( x_{n+1}=\frac{1}{n^{x_{n}}}+\sqrt[n]{x_{n}} \) pentru \( n\geq 2 \). Sa se calculeze
\( \lim_{n\to\infty}\frac{x_{1}+x_{2}+\ldots +x_{n}}{ln n} \).
\( \lim_{n\to\infty}\frac{x_{1}+x_{2}+\ldots +x_{n}}{ln n} \).