Page 1 of 1
Aratati ca sirul tinde la infinit
Posted: Sat Nov 22, 2008 1:39 pm
by turcas
Fie \( (a_n)_{n \in \mathbb{N}} \) un sir de numere reale strict pozitive astfel incat \( a_n > a_0, n \in \mathbb{N} \).
Sa se arate ca \( \lim\limits_{n \to \infty} \sum_{k=0}^n \left(\frac{a_k}{a_{n-k}} \right)^k= \infty. \)
Concursul interjudetean "Teodor Topan", Subiectul IV
Posted: Sat Nov 22, 2008 5:50 pm
by Tudor Micu
\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
Posted: Sat Nov 22, 2008 6:43 pm
by Laurian Filip
Tudor Micu wrote:\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
\( a_n=a_0+\frac{1}{n^2} \) e un sir care indeplineste conditia. Crezi ca
\( (\frac{a_n}{a_0})^n \) tinde la infinit?
Posted: Sat Nov 22, 2008 7:07 pm
by Laurian Filip
\( \left( \frac{a_k}{a_{n-k}} \right)^k+\left(\frac{a_{n-k}}{a_k} \right)^{n-k}>1 \)
(cel putin una dintre fractii e supraunitara)
grupam 2 cate 2 si rezulta
\( \sum_{k=0}^n \left(\frac{a_k}{a_{n-k}}\right )^k > \frac{n}{2} \rightarrow \infty \)
Posted: Sat Nov 22, 2008 7:39 pm
by turcas
Tudor Micu wrote:\( \sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=1+\frac{a_1}{a_{n-1}}+(\frac{a_2}{a_{n-2}})^2+(\frac{a_3}{a_{n-3}})^3+\ldots+(\frac{a_{n-3}}{a_3})^{n-3}+(\frac{a_{n-2}}{a_2})^{n-2}+(\frac{a_{n-1}}{a_1})^{n-1}+(\frac{a_{n}}{a_0})^n \)
Observam ca \( (\frac{a_n}{a_0})^n \) tinde la infinit, iar restul termenilor sumei sunt pozitivi. Rezulta ca evident \( \lim\limits_{n\to\infty}\sum_{k=0}^{n}(\frac{a_k}{a_{n-k}})^k=\infty \)
La fel daca se va ajunge la
\( \left( \frac{n+1}{n} \right)^n \) acesta va tinde la
\( e \). Majoritatea concurentilor s-au pacalit as spune cu aceasta rezolvare.
Posted: Sat Nov 22, 2008 7:51 pm
by Ciprian Oprisa
Totusi, mi se pare a fi in plus conditia \( a_n>a_0 \). Dupa cum se observa in dezvoltarea sumei, \( a_n \) apare doar in ultimul termen, si cum acesta nu tinde la infinit neaparat, conditia pare valabila pentru orice sir pozitiv (dupa cum a demostrat si Laurian).
Are cineva vreo explicatie?
Posted: Sat Nov 22, 2008 9:10 pm
by Tudor Micu
Da, intr-adevar n-am prea fost atent acolo
Dupa ce am trimis mesajul nu m-am mai uitat peste el.
Relativ la
\( a_n>a_0 \) probabil ca aceasta conditie era necesara pentru solutia din barem. Intr-adevar in conditiile solutiei lui Laurian e inutila.
Posted: Tue Nov 25, 2008 3:26 pm
by turcas
Fie \( b_n=\sum_{k=1}^n \left( \frac{a_k}{a_{n-k}} \right)^k +1 \).
Atunci il scriem pe \( b_n \) astfel:
\( b_n= \sum_{k=1}^n \frac{1}{k} \left[ k \left( \frac{a_k}{a_{n-k}} \right)^k \right]+1 \).
Daca notam \( S_n = \sum_{k=1}^n \frac{1}{k} \), atunci din Inegalitatea ponderata a mediilor obtinem :
\( b_n \geq S_n \left(\prod_{k=1}^n k^{\frac{1}{k}} \right)^{S_n} \cdot \left(\prod_{k=1}^n \frac{a_k}{a_{n-k}} \right)^{S_n}+1 \), adica
\( b_n \geq 1+S_n \left( \frac{a_n}{a_0} \right)^{S_n} \Rightarrow \)
\( b_n \geq 1+S_n \).
Dar am demonstrat ca \( \lim_{n \to \infty}{S_n}= \infty \Rightarrow \lim_{n \to \infty} b_n=\infty \).
Asta era in mare solutia din barem. Destul de alambicata, parerea mea. Probabil problema a fost rezultatul unor probleme mai complicate de analiza...
Oricum solutia pe care a prezentat-o Filip mi se pare corecta, daca analizam cele 2 cazuri (n-par si n-impar).