Page 1 of 1

Functie inversabila

Posted: Wed Nov 26, 2008 3:03 pm
by BogdanCNFB
Fie \( \omega\in C-R,|\omega|\neq 1 \). Sa se demonstreze ca functia \( f:C\rightarrow C,f(z)=z+\omega\overline{z} \) este inversabila si sa se calculeze \( f^{-1} \).

Posted: Wed Nov 26, 2008 3:28 pm
by Laurian Filip
\( w=ki \) , \( k \in \mathbb{R} \)
fie \( z=a+b \)i

\( f(z)=a+bi+ki(a-bi)=a+bk+(b+ak)i
\)


fie \( x=u+vi \) un numar complex

\( \begin{cases} u=a+bk \\ v=b+ak \end{cases} \)

pt \( |k| \neq 1 \) acest sistem are solutie unica (\( \frac{1}{k} \neq k \)), deci functia e bijectiva , deci e si inversabila.

\( u-vk=a-ak^2 \)
\( a=\frac{u-vk}{1-k^2} \)
\( b=\frac{v-uk}{1-k^2} \)

\( f^{-1}(x)=\frac{u-vk}{1-k^2}+\frac{v-uk}{1-k^2}i \)