Page 1 of 1

Inegalitate "SINUS 2008"

Posted: Fri Nov 28, 2008 8:29 pm
by maxim bogdan
Fie \( x,y\in\mathbb{R}_{+} \) cu proprietatea ca \( x^3+y^3=2 \).
Demonstrati ca are loc urmatoarea inegalitate:

\( 2(x^2+y^2)+xy\leq 5. \)

Posted: Fri Nov 28, 2008 11:56 pm
by Marius Mainea
Folosind inegalitatea CBS
\( (x^2+y^2)^3\le 2(x^3+y^3)^2=8 \)
si apoi cu medii
\( \sqrt{x^3y^3}\le\frac{x^3+y^3}{2}=1 \)