Page 1 of 1
Functia
Posted: Tue Dec 02, 2008 8:54 pm
by firebomb
Se da o functie \( f:\mathb{R}\rightarrow\mathb{R} \) , cu \( f(x)+2f(3-x)=2x-1 \) . Sa se cerceteze daca functia este para , impara sau periodica .
Posted: Tue Dec 02, 2008 9:55 pm
by Marius Mainea
Se inlocuieste x cu 3-x , se gaseste functia de gradul I f si se studiaza proprietatile din concluzie.
Posted: Tue Dec 02, 2008 10:24 pm
by firebomb
Cred ca m-am prins ...
Fie \( x=3-x \)
Rezulta \( f(3-x)+2f(x)=5-2x/\cdot(-2) \)
\( 2f(3-x)+f(x)=2x-1 \)
\( -2f(3-x)-4f(x)=-10+4x \)
Adunam relatiile si obtinem :
\( -3f(x)=6x-11 \longrightarrow f(x)=-\frac{6x-11}{3}=\frac{11-6x}{3} \)
\( f \)-para \( \Leftrightarrow f(x)=f(-x) \)
Adica \( \frac{11-6x}{3}=\frac{11+6x}{3} \) , fals , rezulta \( f \) nu e para
\( f \)-impara \( \Leftrightarrow \) \( f(-x)=-f(x) \) , adica \( \frac{11-6x}{3}=\frac{6x-11}{3} \) , fals , rezulta \( f \) nu e impara .
\( f \)-periodica \( \Leftrightarrow \) exista \( T\in\mathb{R}* \) astfel incat \( f(x+T)=f(x) \) , \( \forall \)\( x \in \mathb{R} \) , adica \( \frac{11-6x-6T}{3}=\frac{11-6x}{3} \) , rezulta \( T=0 \) , fals , rezulta \( f \) nu e periodica .
E bine ?
Posted: Tue Dec 02, 2008 10:28 pm
by Marius Mainea
Foarte bine
