Page 1 of 1
Seria armonica comparata cu o putere pozitiva.
Posted: Thu Dec 04, 2008 10:30 pm
by Virgil Nicula
Sa se arate ca \( \left(\forall\right)\ \alpha > 0\ \left(\exists\right)\ n_1\in\mathbb{N}^* \) astfel incat \( \left(\forall\right)\ n > n_1\ ,\ \sum_{k = 1}^n\frac 1k\ < \ n^{\alpha} \).
Posted: Thu Dec 04, 2008 11:00 pm
by Laurian Filip
Problema este echivalenta cu
\( \lim_{n\to\infty} (n^a- \sum_{k=1}^n \frac{1}{k}) \geq 0 \).
Stim ca \( \lim_{n\to\infty} \sum_{k=1}^n=c+ \lim_{n\to\infty} \ln n \).
Relatia devine echivalenta cu
\( \lim_{n\to\infty}(n^a-\ln n) \geq c \)
\( \lim_{n\to\infty}( \ln{e^{n^a}} - \ln n) \geq c \)
\( \lim_{n\to\infty}(\ln \frac{e^{n^a}}{n}) \geq c \).
Fie \( k=\frac{n^a}{n} \). Rezulta \( k\geq 0 \).
\( \lim_{n\to\infty}(\ln \frac{e^{kn}}{n}) \geq c \)
\( \lim_{n\to\infty}(\ln \frac{(e^k)^n}{n}) \geq c, \)
care este adevarat pentru ca \( e^k> 1 \).