Page 1 of 1

Punct de pe inaltimea corespunzatoare ipotenuzei

Posted: Fri Dec 05, 2008 11:41 pm
by Claudiu Mindrila
In triunghiul \( ABC \), \( m(\angle A)=90^\circ \), \( [AD] \) este inaltime si \( M \in (AD) \). Sa se arate ca daca \( \angle MBA \equiv \angle MCA \) atunci \( AB=AC \).
Manuela Prajea, R.M.T. 4/2008

Posted: Sat Dec 06, 2008 12:15 am
by Marius Mainea
\( \frac{A[ABM]}{A[ACM]}=\frac{AB\cdot BM\cdot \sin{\angle{MBA}}}{AC\cdot CM\cdot \sin{\angle{MCA}}}=\frac{BD\cdot AM}{CD\cdot AM}=\frac{AB^2}{AC^2} \) si de aici

\( \frac{BD}{CD}=\frac{AB}{AC} \)

Apoi cu putine calcule rezulta ca BD=CD deci triunghiul ABC este isoscel.

Posted: Sat Dec 06, 2008 1:15 am
by Claudiu Mindrila
Solutia mea.
Fie \( { N} =BM \cap AC, {P}= MC \cap AB \).
Deoarece \( \angle MBA \equiv \angle MCA \Longrightarrow \angle PBN \equiv \angle PCN \), deci patrulaterul \( PNCB \) este inscriptibil, sau \( PN \) este antiparalela la \( BC \), deci \( \Delta ANP \sim \Delta ABC\Longrightarrow \frac{AN}{AB}=\frac{AP}{AC}.(1) \), deci \( AN=\frac{AP\cdot AB}{AC} \) si \( AP=\frac{AN \cdot AC}{AB} \)

Dar cu teorema lui Ceva, avem: \( \frac{AP}{PB}\cdot \frac{BD}{DC} \cdot \frac{CN}{NA}=1 \Longleftrightarrow \frac{AP}{PB} \cdot \frac{CN}{NA} \cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN \cdot AC}{AB \cdot PB} \cdot \frac{CN \cdot AC}{AP \cdot AB}\cdot \frac{AB^2}{AC^2}=1\Longleftrightarrow \frac{AN}{PB}=\frac{AP}{CN}\Longleftrightarrow \frac{AN}{AP}=\frac{PB}{CN}.(*) \).

Apoi, \( \Delta ABN \sim \Delta ACP \Longleftrightarrow \frac{AN}{AP}=\frac{AB}{AC}(**) \).
Din \( (*) \) si \( (**) \) rezulta ca \( \frac{PB}{CN}=\frac{AB}{AC} \Longleftrightarrow \frac{PB}{AB}=\frac{CN}{AC} \), ceea ce in conformitate cu reciproca teoremei lui Thales inseamna \( PN \parallel BC \) si deci \( \angle ANP =\angle ABC \) si \( \angle ANP=\angle ACB \), deci \( \angle ABC=\angle ACB \Longleftrightarrow AB=AC \qed \)