Concursul ,,Marian Tarina'', 2008
Posted: Thu Dec 18, 2008 1:45 pm
Sa se arate ca pentru orice \( x,y,z \in \mathbb{R^{\ast} \) are loc inegalitatea:
\( \frac{x^2}{x^{12}+y^6+z^6}+\frac{y^2}{x^6+y^{12}+z^6}+\frac{z^2}{x^6+y^6+z^{12}}\le \frac{1}{x^2y^2z^2}. \)
\( \frac{x^2}{x^{12}+y^6+z^6}+\frac{y^2}{x^6+y^{12}+z^6}+\frac{z^2}{x^6+y^6+z^{12}}\le \frac{1}{x^2y^2z^2}. \)