Inegalitate conditionata 3
Posted: Sat Dec 27, 2008 1:17 pm
Fie a,b,c>0 astfel incat \( abcd(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})=a+b+c+d. \) Sa se arate ca :
\( \frac{(a+1)^2}{a+b}+\frac{(b+1)^2}{b+c}+\frac{(c+1)^2}{c+d}+\frac{(d+1)^2}{d+a}\le 2(a+b+c+d). \)
\( \frac{(a+1)^2}{a+b}+\frac{(b+1)^2}{b+c}+\frac{(c+1)^2}{c+d}+\frac{(d+1)^2}{d+a}\le 2(a+b+c+d). \)