Concursul interjudetean de matematica ''Marian Tarina'' p.II
Posted: Sun Jan 04, 2009 1:28 am
a) Aratati ca \( n+1<\sqrt{n(n+3)}<n+2 \) , \( \forall n\in \mathb{N} \) , \( n>1 \)
b)Calculati suma \( S=[\sqrt{2\cdot 5}]+[\sqrt{3\cdot 6}]+[\sqrt{4\cdot 7}+...+[\sqrt{100\cdot 103}] \) , unde [...] reprezinta partea intreaga a numarului .
c)Determinati \( n\in \mathb{N} \) astfel incat \( [(\sqrt{n}+\sqrt{n+3})^2]=2001 \)
Indicatie : a)Ridicare la patrat
b)\( n+1\le \sqrt{n(n+3)}<n+2 \)
c)Dezvoltarea parantezelor
b)Calculati suma \( S=[\sqrt{2\cdot 5}]+[\sqrt{3\cdot 6}]+[\sqrt{4\cdot 7}+...+[\sqrt{100\cdot 103}] \) , unde [...] reprezinta partea intreaga a numarului .
c)Determinati \( n\in \mathb{N} \) astfel incat \( [(\sqrt{n}+\sqrt{n+3})^2]=2001 \)
Indicatie : a)Ridicare la patrat
b)\( n+1\le \sqrt{n(n+3)}<n+2 \)
c)Dezvoltarea parantezelor