Page 1 of 1

Functii

Posted: Thu Jan 08, 2009 8:24 pm
by Claudiu Mindrila
Se considera functia \( f:\mathbb{R}\rightarrow\mathbb{R},f\left(x\right)=ax^{2}+bx+c \), \( a,b,c\in\mathbf{\mathbb{R}},a\neq0 \). Demonstrati echivalenta afirmatiilor:
i) Exista \( x\in\mathbb{Q},y\in\mathbb{R}-\mathbb{Q} \) si \( \lambda\in\mathbb{R} \) astfel incat \( f^{2}\left(x\right)+f^{2}\left(y\right)=2\lambda\left(f\left(x\right)+f\left(y\right)-\lambda\right). \)
ii) \( \frac{b}{a}\in\mathbb{R}-\mathbb{Q} \).

Dorin Popovici, concursul "Ion Ciolac", 2006

Posted: Sat Jan 10, 2009 2:50 pm
by Marius Mainea
\( i)\Rightarrow ii) \)

Se obtine \( f(x)=f(y)=\lambda \) si de aici \( x+y=-\frac{b}{a}\in\mathbb{R\setminus Q} \)

\( ii)\Rightarrow i) \) Se ia \( x=0,y=-\frac{b}{a},\lambda=c \)