Page 1 of 1
Teorema trisectiei
Posted: Sat Jan 10, 2009 10:09 pm
by Claudiu Mindrila
Problema.(Teorema trisectiei) In triunghiul \( ABC \) fie medianele \( BB\prime \) si \( CC\prime \). Printr-un punct \( T \in (BC) \) se duc paralelele \( TD \) si \( TE \) la medianele \( BB\prime \) respectiv \( CC\prime, (D\in(AB), E\in(AC)) \). Atunci \( BB\prime \) si \( CC\prime \) impart \( DE \) in trei segmente congruente.
Posted: Thu Feb 05, 2009 1:22 pm
by Virgil Nicula
ATENTIE,
am schimbat notatiile din enuntul initial !
Fie \( \triangle\ ABC \) si mijloacele \( N \) , \( P \) ale lui \( [AC] \) , \( [AB] \) respectiv. Pentru \( M\in (BC) \) definim
\( \left|\ \begin{array}{ccc}
E\in AC & , & ME\ \parallel\ BN\\\\
F\in AB & , & MF\ \parallel\ CP\end{array}\ \ \wedge\ \ \begin{array}{c}
X\in BN\ \cap\ EF\\\\
Y\in EF\ \cap\ CP\end{array}\ \right|\ . \) Sa se arate ca \( FX\ =\ XY\ =\ YE \) .
A cam trecut "neobservata" aceasta frumoasa problema. Chiar merita sa fie numita "
teorema trisectiei".
Demonstratie. Aplicam
teorema Menelaus transversalelor/triunghiurilor mentionate corespunzator :
\( \left|\ \begin{array}{cccc}
\overline {BNX}/AEF\ : & \frac {BF}{BA}\cdot\frac {NA}{NE}\cdot\frac {XE}{XF}=1 & \Longrightarrow & \frac {XE}{XF}=\frac {BA}{BF}\cdot\frac {NE}{NA}\\\\\\\\\\
\overline {CPY}/AEF\ : & \frac {CE}{CA}\cdot\frac {PA}{PF}\cdot\frac {YF}{YE}=1 & \Longrightarrow & \frac {YE}{YF}=\frac {CE}{CA}\cdot\frac {PA}{PF}\end{array}\ \right|\ . \) Se observa usor ca :
\( \begin{array}{c}
\left|\ \begin{array}{c}
\frac {BA}{BF}=2\cdot\frac {BP}{BF}=2\cdot \frac {BC}{BM}\\\\\\\\
\frac {NE}{NA}=\frac {NE}{NC}=\frac {BM}{BC}\end{array}\ \right|\ \Longrightarrow\ \frac {BA}{BF}\cdot \frac {NE}{NA}=2\ \Longrightarrow\ \frac {XE}{XF}=2\\\\\\\\\\\\\\\\\\\\
\left|\ \begin{array}{c}
\frac {CE}{CA}=\frac 12\cdot\frac {CE}{CN}=\frac 12\cdot \frac {CM}{CB}\\\\\\\\
\frac {PA}{PF}=\frac {PB}{PF}=\frac {CB}{CM}\end{array}\ \right|\ \Longrightarrow\ \frac {CE}{CA}\cdot \frac {PA}{PF}=\frac 12\ \Longrightarrow\ \frac {YE}{YF}=\frac 12\end{array}\ \Longrightarrow\ FX\ =\ XY\ =\ XE\ . \)
Generalizare.
Virgil Nicula wrote:Fie triunghiul \( ABC \) si punctele \( \left|\ \begin{array}{ccc}
N\in (AC) & , & \frac {NA}{NC}=n\\\\\\\
P\in (AB) & , & \frac {PA}{PB}=p\end{array}\ \right|\ . \) Pentru \( M\in (BC) \) definim punctele
\( \left|\ \begin{array}{ccc}
E\in AC & , & ME\ \parallel\ BN\\\\
F\in AB & , & MF\ \parallel\ CP\end{array}\ \ \wedge\ \ \begin{array}{c}
X\in BN\ \cap\ EF\\\\
Y\in EF\ \cap\ CP\end{array}\ \right|\ \Longrightarrow\ XY\ =\ \frac {FX}{n}\ =\ \frac {YE}{p}\ =\ \frac {EF}{n+p+1} \) .
Posted: Tue Mar 17, 2009 5:06 pm
by mihai miculita
Alta solutie:
\( \mbox{Folosind notatiile initiale si punand: } \{M\}=BB^{\prime}\cap DE; \{N\}=CC^{\prime}\cap DE\mbox{, avem de aratat ca: } |DM|=|MN|=|NE|.\\
1).\mbox{Daca: } \{G\}=BB^{\prime}\cap CC^{\prime} \mbox{, atunci }\\
\frac{|GB^{\prime}|}{|GB|}=\frac{|GC^{\prime}|}{|GC|}=\frac{1}{2}. \ (1)\\
2).\mbox{Notand cu } \{P\}=DT\cap BB^{\prime}\mbox{, avem:}\\
\left \begin{\array} {\frac{|GC^{\prime}|}{|GC|}=\frac{1}{2}}\ {(1)} \\
{DT||CC^{\prime}} \right\}\Rightarrow \frac{|DP|}{|PT|}=\frac{1}{2}.\ (2) \\
3). \\
\left \begin{\array} {\frac{|DP|}{|PT|}=\frac{1}{2}}\ {(2)} \\
{TE||PM} \right\}\Rightarrow \frac{|DM|}{|ME|}=\frac{1}{2}\Rightarrow \frac{|DM|}{|DE|}=\frac{1}{3}.\ (3) \\
\mbox{In mod analog aratam ca: } \frac{|NE|}{|DE|}=\frac{1}{3}. \ (4)\\
\mbox{In fine, din (3) si (4) }\Rightarrow |DM|=|MN|=|NE|. \)