Page 1 of 1

Inegalitate.

Posted: Sun Jan 11, 2009 10:18 pm
by Claudiu Mindrila
Demonstrati ca pentru orice \( a,b,c>0 \) cu \( abc=1 \) avem: \( \sum \frac{a}{b+c+1} \geq 1 \).

O solutie

Posted: Mon Jan 12, 2009 7:36 pm
by maxim bogdan
Avem: \( \sum_{cyc}\frac{a}{b+c+1}=\sum_{cyc}\frac{a^2}{ab+ac+a}\geq\frac{(a+b+c)^2}{2(ab+bc+ca)+(a+b+c)} \) (am aplicat inegalitatea Cauchy-Buniakowski-Schwarz).

Mai ramane de aratat ca: \( \frac{(a+b+c)^2}{2(ab+bc+ca)+(a+b+c)}\geq 1\Longleftrightarrow a^2+b^2+c^2\geq a+b+c \)

Ultima inegalitate este adevarata deoarece: \( a^2+b^2+c^2\geq\frac{(a+b+c)^2}{3}\geq a+b+c\Longleftrightarrow a+b+c\geq 3, \) care rezulta imediat din inegalitatea mediilor.