Page 1 of 1

The n-th mean value theorem

Posted: Thu Oct 18, 2007 2:03 am
by Cezar Lupu
Se considera \( f:[a, b]\to\mathbb{R} \) o functie de \( n+1 \)-ori derivabila pe \( [a, b] \) astfel incat \( f^{(i)}(a)=f^{(i)}(b)=0 \) pentru \( i=0, 1, \ldots, n \). Aratati ca exista \( \xi\in (a, b) \) astfel incat \( f^{(n+1)}(\xi)=f(\xi) \).

(Problema E 3214, 1987, American Mathematical Monthly)

Posted: Wed May 14, 2008 1:38 pm
by Bogdan Cebere
Fie \( g(x)=e^{-x}(f^{(n)}(x)+f^{(n-1)}(x)+...+f^{\prime}(x)+ f(x)) \). Din ipoteza avem ca \( g(a)=g(b)=0 \). Rezulta ca exista \( \xi\in (a, b) \) astfel incat \( g^{\prime}(x)=0 \). Dar
\( g^{\prime}(x)=e^{-x}((f^{(n+1)}(x)-f^{(n)}(x))+(f^{(n)}(x)-f^{(n-1)}(x))+...+(f^{\prime}(x)-f(x)))=e^{-x}(f^{(n+1)}(x)-f(x)) \).
Deci exista \( \xi\in (a, b) \) a.i. \( f^{(n+1)}(\xi )-f(\xi )=0 \).