Page 1 of 1

Inegalitate neomogena

Posted: Sat Jan 24, 2009 12:34 am
by Marius Mainea
Sa se arate ca :

\( \sqrt{x(y+1)}+\sqrt{y(z+1)}+\sqrt{z(x+1)}\le \frac{3}{2}\sqrt{(x+1)(y+1)(z+1)} \)

oricare ar fi x,y,z numere reale pozitive.

Gheorghe Szollosy,Gazeta Matematica

Posted: Sun Jan 25, 2009 11:37 am
by alex2008
Impartim prin radicalul mare din dreapta si obtinem

\( \sum_{cyc}\sqrt{\frac{x}{(x+1)(z+1)}}\le \frac{3}{2} \)
Acum folosim \( ab\le \frac{1}{2}\cdot (a^2+b^2) \) si avem :

\( S\le \frac{1}{2}\cdot (\sum_{cyc}\frac{x}{x+1}+\sum_{cyc}\frac{1}
{x+1})=\frac{1}{2}\cdot (\sum_{cyc}\frac{x}{x+1})=\frac{3}{2} \)