Page 1 of 1

Sir dat printr-o relatie de recurenta

Posted: Sat Jan 24, 2009 4:47 pm
by Andrei Velicu
Fie sirul \( (a_n)_{n\ge 1} \) dat de \( a_1=1 \) si \( a_{n+1}=\frac{a_n^2+2}{n+1}, \forall n\in\mathbb{N}. \)
Sa se calculeze \( \displaystyle\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{1+\frac{1}{2}+\cdots +\frac{1}{n}} \).

GMB, subiectul 4, OLM 2009 Constanta

Posted: Thu Feb 05, 2009 1:10 am
by Marius Mainea
Se arata prin inductie ca \( a_n\in(0,2) \) pentru \( n\ge 2 \), asadar sirul \( (a_n) \) e marginit si din relatia de recurenta rezulta ca \( a_n\rightarrow 0(n\to\infty) \).

Apoi aplicand criteriul Cesaro-Stolz obtinem ca limita cautata este 2.