Page 1 of 1

Proprietati

Posted: Sat Jan 24, 2009 10:23 pm
by Luiza
1)Suma a oricare \( 2k+1 \) numere consecutive se divide prin \( 2k+1 \) ?
2)Suma a oricare \( 2k \) numere consecutive se divide prin \( 2k \) ?
3)Care este forma patratelor perfecte ? (adica cum sunt numerele impare \( 2k+1 \))

Posted: Tue Feb 03, 2009 12:49 am
by alex2008

Posted: Sat Apr 25, 2009 7:17 pm
by Andi Brojbeanu
1)Numerele sunt: \( x, x+1, x+2, ......, x+2k-1, x+2k \).
Atunci suma lor va fi egala cu: \( x+x+1+x+2+....+x+2k-1+x+2k=(2k+1)\cdot x+(1+2+3+.....+2k-1+2k)=(2k+1)\cdot x+\frac{2k\cdot (2k+1)}{2}=(2k+1)(x+k)\vdots 2k+1 \).
2)Numerele sunt: \( x, x+1, x+2, ......, x+2k-2, x+2k-1 \).
Atunci suma lor va fi egala cu: \( x+x+1+x+2+....+x+2k-2+x+2k-1=2k\cdot x+(1+2+3+.....+2k-2+2k-1)=2k\cdot x+\frac{(2k-1)2k}{2}=2k(x+\frac{2k-1}{2}) \).
Deoarece \( \frac{2k-1}{2}\notin \mathb{N} \)\( \Rightarrow 2k \) nu divide \( 2k(x+\frac{2k-1}{2}) \).