Page 1 of 1
0*infinit
Posted: Tue Feb 03, 2009 6:04 pm
by Andrei Ciupan
Sa se calculeze (daca exista, si banuiesc ca exista) \( \displaystyle\lim_{n\mapsto \infty} n\left(\sqrt[n] n- \sqrt[n+1]{n+1} \right) \).
Posted: Tue Feb 03, 2009 7:09 pm
by Radu Titiu
Notez \( x_n =\frac{\sqrt[n+1]{n+1}}{\sqrt[n]{n}} \).
Avem \( \lim_{n\to\infty}x_n^n=\lim_{n\to\infty}(1+x_n-1)^n=\lim_{n\to\infty} e^{n(x_n-1)} \).
Dar \( \lim_{n\to\infty}x_n^n = \lim_{n\to\infty} \frac{\sqrt[n+1]{(n+1)^n}}{n}=1 \).
Atunci \( \lim_{n\to\infty}n(x_n-1)=0 \). Deci si limita cautata e 0.
Re: 0*infinit
Posted: Wed Feb 04, 2009 1:06 pm
by Virgil Nicula
Virgil Nicula wrote:Sa se arate ca \( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ . \)
Stim ca
\( \lim_{n\to\infty }\ \sqrt[n]n=1 \) si
\( \lim_{x\to 0}\ \frac {e^x-1}{x}=1\ , \) adica
\( \left|\ \begin{array}{c}
x_n\rightarrow 0\\\\
x_n\ne 0\ (\forall )\ n\in\mathbb N^*\end{array}\ \right|\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {e^{x_n}-1}{x_n}=1\ . \)
\( L\equiv\ \lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)=\lim_{n\to\infty}\ \frac {n^2}{\ln n}\ \cdot\ \sqrt[n+1]{n+1}\ \cdot\ \frac {e^{x_n}-1}{x_n}\ , \) unde
\( x_n=\frac {(n+1)\ln n-n\ln (n+1)}{n(n+1)} \)
si
\( x_n\ \rightarrow\ 0\ . \) Asadar,
\( L=\lim_{n\to\infty }\ \frac {n^2}{\ln n}\cdot x_n=\lim_{n\to\infty }\ \frac {(n+1)\ln n-n\ln (n+1)}{\ln n}=\lim_{n\to\infty }\ \frac {\ln n-\ln\left(1+\frac 1n\right)^n}{\ln n}=1\ . \)
Consecinta. \( \lim_{n\to\infty}\ n\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\lim_{n\to\infty}\ \frac {\ln n}{n}\ \cdot\ \frac {n^2}{\ln n}\left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =0\ \cdot\ 1=\ 0\ . \)
Posted: Wed Feb 04, 2009 7:04 pm
by aleph
Iată şi o generalizare dusă puţin dincolo de limita suportabilului

:
Să se arate că:
\(
\lim_{n\rightarrow \infty }n^{4}[(\sqrt[n]{n}-\sqrt[n+1]{n+1})-({\frac{\ln
(n)}{{n}^{2}}}-\frac{1}{n^{2}}+{\frac{(\ln (n))^{2}}{{n}^{3}}}-{\frac{2\ln
(n)}{{n}^{3}}+}\frac{3}{2n^{3}}+{\frac{(\ln (n))^{3}}{2{n}^{4}}}-{\frac{
2(\ln (n))^{2}}{{n}^{4}}+\frac{7\ln (n)}{2{n}^{4}}})]=-7/3
\)
Posted: Wed Feb 04, 2009 7:21 pm
by Virgil Nicula
aleph wrote:Iată şi o generalizare dusă
puţin dincolo de limita suportabilului
OFF-topic. Deci se poate si mai mult ?!

Si cand ma gandesc ca
Andrei si cu mine nu am vrut sa depasim anumite limite .... Poate ne oferiti si o demonstratie, ca cel putin mie mi se pare dusa si putin dincolo de limita frumusetii acceptate. Daca mai vad doua, trei asemenea generalizari cred ca ma duc la carciuma sa ma conving ca mai exista si altceva in afara de matematica ...
Numai bine si
sper ca nu v-ati suparat pe mine !
Posted: Wed Feb 04, 2009 9:27 pm
by aleph
Dezvoltarea (asimptotică) a fost găsită simplu cu Maple.
Se poate şi manual, scriind
\( \sqrt[n]{n} = e^x \), unde \( x = \ln (n)/n \)
şi dezvoltând Taylor \( e^x \).
Similar (dar cu nişte complicaţii) pentru celălalt termen.
Posted: Thu Feb 05, 2009 8:15 pm
by Virgil Nicula
Multumesc Aleph, dar te rog sa nu mai vii cu asemenea extinderi ca ma apuca ameteala ...
Posted: Thu Feb 05, 2009 8:31 pm
by enescu
Alternativ, daca \( f(x)=x^{\frac1x} \), atunci limita este \( n(f(n)-f(n+1)) \), dar \( f(n)-f(n+1)=-f^{,}(c_n) \), cu \( c_n \in (n,n+1) \), din Lagrange. Cum evident \( \frac{c_n}{n} \rightarrow 1 \), ramane de calculat \( \displaystyle \lim_{x\to \infty}xf^{,}(x) \), adica \( \displaystyle \lim_{x\to \infty}e^{\frac{\ln x}{x}} \cdot \frac{1-\ln x}{x}=0 \)
Posted: Fri Feb 06, 2009 8:05 pm
by Virgil Nicula
Frumoasa demonstratie, dle Enescu ! Voi aplica ideea dvs. la sirul care
"satureaza" sirul initial, adica \( \overline {\underline{\left\|\ \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =\ 1\ \right\|}}\ . \)
Functiei Rolle \( f(x)=x^{\frac 1x}\ ,\ x\in [n,n+1]\ ,\ n\in\mathbb N^* \) a carei functie-derivata este \( f^{\prim}(x)=x^{\frac 1x}\cdot\frac {1-\ln x}{x^2} \)
ii aplicam teorema Lagrange : exista \( n\ <\ c_n\ <\ n+1 \) astfel incat \( f(n+1)-f(n)=c_n^{\frac {1}{c_n}}\cdot\frac {1-\ln c_n}{c_n^2}\ . \)
Se observa ca \( c_n\rightarrow\infty \) , \( c_n^{\frac {1}{c_n}}\rightarrow 1 \) si \( \left\|\ \begin{array}{ccc}
\ln n\ <\ \ln c_n\ <\ \ln (n+1) & \Longrightarrow & \frac {\ln c_n}{\ln n}\rightarrow 1\\\\\\\\
\frac {n}{n+1}\ <\ \frac {n}{c_n}\ <\ 1 & \Longrightarrow & \frac {n}{c_n}\rightarrow 1\end{array}\ \right\|\ . \) Asadar,
\( \displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left(\sqrt[n] n\ -\ \sqrt[n+1]{n+1} \right)\ =-\displaystyle\lim_{n\to\infty}\ \frac {n^2}{\ln n}\cdot \left[f(n+1)-f(n)\right]=-\lim_{n\to\infty}\ c_n^{\frac {1}{c_n}}\cdot \left(\frac {n}{c_n}\right)^2\cdot\left(\frac {1}{\ln n}-\frac {\ln c_n}{\ln n}\right)=1\ . \)