Page 1 of 1
Iran 1996
Posted: Wed Feb 04, 2009 12:46 pm
by alex2008
Daca \( a,b,c\ge 0 \) sa se arate ca :
\( (\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2})(ab+bc+ca)\ge \frac{9}{4} \)
Posted: Sun Feb 08, 2009 10:44 pm
by maxim bogdan
Dupa aducerea la acelasi numitor si desfacerea parantezelor se obtine inegalitatea echivalenta:
\( (\displaystyle\sum_{sym}x^5 y-\displaystyle\sum_{sym}x^4 y^2)+3(\displaystyle\sum_{sym}x^5 y-\displaystyle\sum_{sym}x^3 y^3)+2xyz(3xyz+\displaystyle\sum_{cyc}x^3-\displaystyle\sum_{sym}x^2 y)\geq 0. \)
Din inegalitatea lui Muirhead si inegalitatea lui Schur rezulta imediat ca inegalitatea noastra e adevarata fiind suma a trei termeni pozitivi. \( \box \)
Posted: Sun Feb 08, 2009 10:53 pm
by enescu
A se vedea
http://www.mathlinks.ro/Forum/viewtopic.php?t=3547 si link-urile aferente...
E prea cunoscuta inegalitatea
