Page 1 of 1
Calcul limita
Posted: Thu Feb 05, 2009 11:58 am
by Beniamin Bogosel
Calculati \( \lim_{n \to \infty} \int_0^n \left( 1-\frac{x}{n}\right)^n x^{a-1} dx \) unde \( a>0 \).
Examen Analiza Reala 05.02.2009
UVT Timisoara, fac. Mate, Anul II
(Se rezuma la calcularea integralei Riemann generalizate \( \frac{1}{a}\int_0^\infty e^{-x}x^a dx \), pe care nu am reusit sa o calculez.)
Re: Calcul limita
Posted: Thu Feb 05, 2009 3:52 pm
by Virgil Nicula
Beniamin Bogosel wrote:\( \lim_{n \to \infty}\ \int_0^n \left( 1-\frac{x}{n}\right)^n x^{a-1}\ \mathrm { dx} \) unde \( 0\ <\ a\ne 1 \) (examen Analiza Reala, UVT Timisoara, fac. Mate, Anul II).
Indicatie. Se reduce la integrala Riemann generalizate \( \frac{1}{a}\int_0^\infty e^{-x}x^a dx \), pe care nu am reusit sa o calculez.
Notam
\( I_n=\int_0^n \left( 1-\frac{x}{n}\right)^n x^{a-1}\ \mathrm { dx}\ ,\ n\in\mathbb N^*\ . \) Prin substitutia
\( x:=\frac xn \) se obtine
\( \overline {\underline {\left|\ I_n=n^a\cdot J_n\ \right|}}\ , \)
unde
\( J_n=\int_0^1(1-x)^nx^{a-1}\ \mathrm {dx}\ . \) Vom cauta o relatie de recurenta pentru
\( J_n\ ,\ n\in\mathbb N^*\ . \) Se observa
ca
\( J_1=\frac {1}{a(a+1)} \) si
\( J_{n+1}=\int_0^1(1-x)^{n+1}x^{a-1}\ \mathrm {dx}=\int_0^1(1-x)^nx^{a-1}(1-x)\ \mathrm {dx}\ \Longrightarrow \)
\( \overline {\underline {\left|\ J_{n+1}=J_n-K\ \right|}} \) , unde
\( K=\int_0^1(1-x)^nx^a\ \mathrm {dx}\ . \) Acum vom folosi integrarea prin parti astfel :
\( \left|\begin{array}{ccc}
u(x)=x^a & \Longrightarrow & u^{\prim}(x)=ax^{a-1}\\\\
v^{\prim}(x)=(1-x)^n & \Longrightarrow & v(x)=-\frac {(1-x)^{n+1}}{n+1}\end{array}\ \right|\ \Longrightarrow\ K=\frac {a}{n+1}\cdot \int_0^1(1-x)^{n+1}x^{a-1}\ \mathrm {dx}\ , \)
adica
\( \overline {\underline{\left|\ K=\frac {a}{n+1}\cdot J_{n+1}\ \right|}}\ \Longrightarrow\ J_{n+1}=J_n-\frac {a}{n+1}\cdot J_{n+1}\ \Longrightarrow\
J_{n+1}=\frac {n+1}{a+n+1}\cdot J_n\ \Longrightarrow \)
\( J_n=\frac {n!}{a(a+1)(a+2)\ldots (a+n-1)(a+n)}\ ,\ n\in\mathbb N^*\ \Longrightarrow \) ,
\( \overline{\underline{\left|\ I_n=\frac {n!\cdot n^a}{a(a+1)(a+2)\ldots (a+n-1)(a+n)}\ \right|}} \) ,
\( n\in\mathbb N^*\ . \)
Se observa ca
\( \frac {n+1}{n+a+1}\ <\ \frac {I_{n+1}}{I_n}\ <\ \left(1+\frac 1n\right)^a\ \Longrightarrow\ \lim_{n\to\infty}\ \frac {I_{n+1}}{I_n}\ =\ 1\ . \)
@ Beniamin Bogosel. VEZI aici . In concluzie,
\( \lim_{n\to\infty}\ I_n=(a-1)!\ . \)
Posted: Fri Feb 06, 2009 9:40 am
by aleph
Pentru un examan de analiză reală soluţia e mult mai scurtă.
Se aplică şirului crescător de funcţii
\( f_n(x) = ( 1-\frac{x}{n})^n x^{a-1} \chi_{(0,n]}(x) \)
teorema convergenţei monotone şi rezultă că limita noastră este
\( \int_0^\infty e^{-x}x^{a-1} dx = \Gamma(a) \ [=(a-1)! ] \).
Posted: Fri Feb 06, 2009 10:56 am
by Beniamin Bogosel
Asta era si ideea, si de aceea am postat initial problema la teoria masurii...
