Page 1 of 1
Inegalitate (cunoscuta?!)
Posted: Fri Feb 06, 2009 10:51 am
by maxim bogdan
Demonstrati ca daca \( x,y,z>0 \) astfel incat \( xyz=x+y+z+2, \) atunci are loc inegalitatea:
\( 2(\sqrt{xy}+\sqrt{yz}+\sqrt{zx})\leq x+y+z+6. \)
Posted: Fri Jun 12, 2009 1:10 am
by Marius Mainea
Notam \( x=\frac{b+c}{a} \) si analoagele si inegalitatea devine:
\( 2(\sum_{cyc} \sqrt{(a^2c+abc)(a^2b+abc)})\le \sum_{cyc}ab(a+b)+6abc \) care este evidenta din AM-GM
Posted: Thu Jun 25, 2009 10:30 am
by alex2008
Inegalitatea este echivalenta cu :
\( \sqrt {x} + \sqrt {y} + \sqrt {z} \le \sqrt {2(x + y + z + 3)} \)
Deoarece \( xyz = x + y + z + 2 \) , facem substitutia \( x = \frac {b + c}{a}\ ,\ y = \frac {c + a}{b}\ ,\ z = \frac {a + b}{c} \).
Inegalitatea devine :
\( \sum \ \sqrt {\frac {b + c}{a}} \le \sqrt {2(\sum \ a)(\sum \ \frac {1}{a})} \) , care este adevarata din Cauchy-Schwartz .