Page 1 of 1
aflati numerele
Posted: Mon Feb 09, 2009 8:26 pm
by katos
Aflati numerele naturale x si y pentru care x la put 2 + y la put 2 = 2 la put 101
Posted: Wed Mar 04, 2009 6:52 pm
by BurnerD1
adica \( x^2 + y^2 = 2^{101} \)
Posted: Wed Mar 04, 2009 7:05 pm
by DrAGos Calinescu
\( x^2,y^2\in {M_4,M_4+1,M_4+2}\Longrightarrow \) x,y numere pare.
Deci \( 4(x_2^2+y_2^2)=2^{101}\Longrightarrow x_2^2+y_2^2=2^{99} \)
Procedam asemanator si deducem ca \( x=2^p, y=2^q \)
Presupunem \( p\ge q \) si impartim prin \( 2^{2q}\Longrightarrow 2^{2(p-q)}+1=2^{101-2q}\Longrightarrow p=q=25\Longrightarrow x=y=2^{50} \)
Posted: Wed Mar 04, 2009 7:13 pm
by BurnerD1
\( \mathbb{M}4 \) fiind multiplii lui 4, \( \mathbb{M} 4+1 = {5,9,11, ...} \) ??
Posted: Wed Mar 04, 2009 7:15 pm
by DrAGos Calinescu
Da
Posted: Wed Mar 04, 2009 7:18 pm
by BurnerD1
Si de unde stii tu asta ? ca \( x^2,y^2 \in M_4, M_{4+1}, M_{4+2} \) ??
Posted: Wed Mar 04, 2009 7:21 pm
by DrAGos Calinescu
Sunt formele pe care le poate lua un patrat perfect.
Posted: Thu Mar 05, 2009 8:56 am
by mihai++
burnerd1 te rog frumos sa fi un pic mai politicos ca site ul asta e pt invatat nu pt luat la rost
Posted: Thu Mar 05, 2009 9:06 am
by BurnerD1
mihai++ eu nu intreb cu tenta de a jigni sau de "a lua la rost", ci eu intreb pentru a documenta.