Page 1 of 1

Ecuatie in numere intregi

Posted: Mon Feb 09, 2009 8:29 pm
by katos
Aflati numerele intregi x si y din ecuatia X la put 6 + 3x la put 3 + 1 = y la put 4

Re: aflati numerele

Posted: Sat Feb 14, 2009 4:03 pm
by Claudiu Mindrila
katos wrote:Aflati numerele intregi x si y din ecuatia X la put 6 + 3x la put 3 + 1 = y la put 4
Aflati numerele intregi \( x \) si \( y \) din ecuatia \( x^6+3x^3+1=y^4 \), nu?

Posted: Thu Mar 25, 2010 10:15 pm
by Andi Brojbeanu
\( (x^3)^2+3x^3+(1-y^4)=0 \).
\( x^3_{1,2}=\frac{-3\pm\sqrt{3^2-4(1-y^4)}}{2}=\frac{\sqrt{5+4y^4}-3}{2} \).
Fie \( z=|y| \). Atunci \( y^4=z^4 \).
Pentru \( z=0 \), avem: \( x^3_{1,2}=\frac{-3\pm\sqrt{5}}{2}\not \in \mathb{Z} \).
Pentru \( z=1 \), avem: \( x^3_{1,2}=\frac{-3\pm\sqrt{9}}{2} \), deci \( x^3_1=0\Rightarrow x_1=0 \) si \( x^3_2=-3 \), imposibil.
Pentru \( z>1, 5+4z^4>4z^4=(2z^2)^2 \)(echivalenta cu \( 5>0 \), adevarat) si \( 5+4z^4<(2z^2+1)^2 \) (echivalenta cu \( 4z^2+1>5, 4z^2>4, z^2>1, z>1 \), adevarat), deci \( (2z^2)^2<4z^4+5<(2z^2+1)^2 \). Situandu-se intre doua patrate perfecte consecutive, \( 4z^4+5 \) nu este patrat perfect, deci \( x^3_{1,2} \) nu este intreg
Deci, solutiile sunt \( (0,1) \) si \( (0, -1) \).

Posted: Thu Mar 25, 2010 10:45 pm
by Claudiu Mindrila
Ca sa nu mai folosesti delta puteai sa inmultesti cu 4, iar apoi formai patrate perfecte.