Page 1 of 1
2 inegalitati integrale
Posted: Fri Feb 27, 2009 11:05 am
by Bogdan Posa
1. \( \frac{1}{4} \int_0^1f^2(x)dx+2(\int_0^1f(x))^2dx \geq 3 \int_0^1f(x) dx\int_0^1 xf(x)dx \)
2. \( \int_0^1f(x)dx \int_0^1x^4f(x)dx \le \frac{4}{15} \int_0^1f^2(x)dx \)
Posted: Fri Feb 27, 2009 11:25 am
by Marius Mainea
1) Cautam \( a \) real astfel incat sa aiba loc inegalitatea echivalenta
\( \frac{1}{4}\int_0^1f^2(x)dx+(2+3a)\(\int_0^1f(x)dx\)^2\ge3\int_0^1f(x)dx\int_0^1(x+a)f(x)dx \)
Acest lucru se obtine notand \( \int_0^1f(x)dx=y \) si punand conditia ca trinomul in y astfel obtinut sa aiba discriminantul \( \Delta\le(1+6a+9a^2)\int_0^1f^2(x)dx \) mai mic sau egal cu 0.
Se gaseste evident \( a=-\frac{1}{3} \) si inegalitatea este demonstrata.
2) Din CBS
\( 4\int_0^1x^4f(x)dx\int_0^1af(x)dx\le\(\int_0^1(x^4+a)f(x)dx\)^2\le\int_0^1(x^4+a)^2dx\int_0^1f^2(x)dx \) pentru orice numar real \( a \) si apoi se cauta \( a \) astfel incat \( \frac{\int_0^1(x^4+a)^2dx}{4a}=\frac{4}{15} \)
Se gaseste evident \( a=\frac{1}{3} \) si inegalitatea este demonstrata.