Page 1 of 1
Sistem agreabil ...
Posted: Fri Feb 27, 2009 10:03 pm
by Virgil Nicula
Sa se rezolve peste \( \mathbb R \) sistemul \( \left\{\begin{array}{c}
2-x=\frac {2}{y^2+1}\\\\\\\\
2-y=\frac {2}{z^2+1}\\\\\\\\
2-z=\frac {2}{x^2+1}\end{array} \) (cel putin doua metode).
Posted: Fri Feb 27, 2009 10:19 pm
by Marius Mainea
Metoda 1)
Se observa ca x,y,z sunt numere nenegative
Notand \( f(t)=2-\frac{2}{t^2+1} \), \( f:[0,\infty)\rightarrow\mathbb{R} \) care este strict crescatoare, sistemul se scrie
\( \left{\begin{array}{cc}f(y)=x\\f(z)=y\\f(x)=z\end{array} \)
si de aici \( f(f(f(x)))=x \), \( f(x)=x \), x=0 sau x=1.
Asadar solutiile sunt (0,0,0) si (1,1,1)
Metoda 2)
Conform inegalitatii AM-GM prima ecuatie devine
\( x=\frac{2y^2}{y^2+1}\le\frac{2y^2}{2y}=y \) si analog din celelalte doua ecuatii \( y\le z,\ z\le x \), deci x=y=z si apoi se continua ca la prima metoda.
Posted: Sat Feb 28, 2009 12:27 pm
by Virgil Nicula
Marius Mainea wrote: Metoda 2.
Conform inegalitatii AM-GM prima ecuatie devine \( x=\frac{2y^2}{y^2+1}\le\frac{2y^2}{2y}=y \) si analog din celelalte doua ecuatii \( y\le z,\ z\le x \) deci x=y=z si apoi se continua ca la prima metoda.
Esti tare,
Marius ! De fapt, daca facem produsul relatiilor
\( \left\|\ \begin{array}{c}
x=\frac{2y^2}{y^2+1}\\\\\\
y=\frac{2z^2}{z^2+1}\\\\\\
z=\frac{2x^2}{x^2+1}\end{array}\ \right\| \)
pentru
\( xyz\ne 0 \) si pozitive, obtinem
\( (x^2+1)(y^2+1)(z^2+1)=8xyz\ \Longleftrightarrow\ x=y=z=1\ . \)