Page 1 of 1

Geometrie

Posted: Sat Feb 28, 2009 9:56 am
by alex2008
Fie dreptunghiul \( ABCD \) in care \( AB=BC\sqrt{2} \) si punctul \( M \) care apartine semicercului de diametru \( AB \), situat in acelasi semiplan cu dreapta \( CD \). Notam \( F\in DM\cap AB \) si \( G\in CM\cap AB \). Sa se arate relatia \( AG^2+BF^2=AB^2 \).

Geometrie Plana (sintetica, vectoriala, analitica), Virgil Nicula

Posted: Sun Mar 01, 2009 1:49 pm
by Virgil Nicula
OFF-topic. Aceasta frumoasa problema apartine lui Fermat (1601-1665), unic cu acest nume in matematica ! Deci are o vechime de aprox. patru secole (prin adaos !) si a aparut in numeroase culegeri de probleme si reviste, mai vechi sau mai recente.

ON-topic. Va recomand sa folositi geometria analitica (dupa parerea mea, cea mai scurta demonstratie !) alegand dreapta \( AB \) ca axa \( Ox \) si mediatoarea laturii \( [AB] \) ca axa \( Oy \) astfel incat \( B(1,0) \) si \( C(1,\sqrt 2)\ . \)

In solutia mea metrica am ajuns in final la identitatea (pentru \( a=b=1 \) si \( c=-\sqrt 2 \) ) , unde \( \phi=m\ (\angle BOM) \) :

\( \underline{\overline{\left\|\ (a+b\cdot\cos\phi +c\cdot\sin\phi )^2+(a-b\cdot\cos\phi +c\cdot\sin\phi )^2=2(c+a\cdot\sin\phi )^2+2\left(a^2+b^2-c^2\right)\cdot\cos^2\phi\ \right\|}} \) .

Posted: Tue Mar 03, 2009 2:52 pm
by Virgil Nicula
alex2008 wrote: Fie dreptunghiul \( ABCD \) in care \( AB=BC\sqrt{2} \) si punctul \( M \) care apartine semicercului de diametru \( AB \),

situat in acelasi semiplan cu dreapta \( CD \). Notam \( F\in DM\cap AB \) si \( G\in CM\cap AB \).

Sa se arate relatia \( AG^2+BF^2=AB^2 \) (Geometrie Plana - sintetica, vectoriala, analitica, Virgil Nicula)
Dem. Presupunem fara a restrange generalitatea ca \( AB=CD=2 \) si \( AD=BC=\sqrt 2\ . \) Notam

\( \left\|\ \begin{array}{c}
m(\widehat {BOM})=2x\\\\\\\\
m(\widehat {BCM})=u\\\\\\\\
m(\widehat {ADM})=v\end{array}\ \right\|\ . \)
Se observa ca \( \left\|\ \begin{array}{c}
MA=2\cos x\\\\\\\\
MB=2\sin x\end{array}\ \right\| \)
si aplicam teorema sinusurilor in triunghiurile :

\( \odot\ \ \triangle\ ADM\ :\ \frac {MA}{\sin v}=\frac {AD}{\cos (x-v)}\ \Longrightarrow\ \frac {2\cos x}{\sin v}=\frac {\sqrt 2}{\cos (x-v)}\ \Longrightarrow\ \sqrt 2\cos x=\frac {\tan v}{\cos x+\sin x\tan v}\ \Longrightarrow \)

\( \frac {AF}{AD}=\tan v=\frac {\sqrt 2\cos^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ AF=\frac {2\cos^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ \overline{\underline{\left\|\ FB=\frac {2\sin^2x-\sqrt 2\sin 2x}{1-\sqrt 2\sin x\cos x}\ \right\|}} \) .

\( \odot\ \ \triangle\ BCM\ :\ \frac {MB}{\sin u}=\frac {BC}{\sin (x+u)}\ \Longrightarrow\ \frac {2\sin x}{\sin u}=\frac {\sqrt 2}{\sin (x+u)}\ \Longrightarrow\ \sqrt 2\sin x=\frac {\tan u}{\sin x+\cos x\tan u}\ \Longrightarrow \)

\( \frac {BG}{BC}=\tan u=\frac {\sqrt 2\sin^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ BG=\frac {2\sin^2x}{1-\sqrt 2\cos x\sin x}\ \Longrightarrow\ \overline{\underline{\left\|\ GA=\frac {\sqrt 2\sin 2x-2\cos^2x}{1-\sqrt 2\sin x\cos x}\ \right\|}} \) .

Deci \( \overline{\underline{\left\|\ FB^2+GA^2=AB^2\ \right\|}}\ \Longleftrightarrow\ \left(2\sin^2x-\sqrt 2\sin 2x\right)^2+\left(2\cos^2x-\sqrt 2\sin 2x\right)^2=4\left(1-\sqrt 2\sin x\cos x\right)^2 \)

adica \( \left(1-\cos 2x-\sqrt 2\sin 2x\right)^2+\left(1+\cos 2x-\sqrt 2\sin 2x\right)^2=\left(2-\sqrt 2\sin 2x\right)^2\ . \) Notam \( 2x=y\ . \) Prin urmare,

\( \left(1-\cos y-\sqrt 2\sin y\right)^2+\left(1+\cos y-\sqrt 2\sin y\right)^2=\left(2-\sqrt 2\sin y\right)^2\ \Longleftrightarrow \)

\( 2+2\cos^2y+4\sin^2y-4\sqrt 2\sin y=4-4\sqrt 2\sin y+2\sin^2y\ \Longleftrightarrow\ \underline{\overline{\left\|\ \cos^2y+\sin^2y=1\ \right\|}} \) , evident.