diagonala principala a unei matrice
Posted: Mon Oct 22, 2007 11:48 pm
Pe diagonala principala a unei matrice \( A\in M_{n}(\mathbb{C}) \) se gasesc radacinile de ordin \( n \) ale unitatii. Sa se demonstreze ca exista
matrice \( B, C\in M_{n}(\mathbb{C}) \) astfel incat \( B+C=A \), \( B^{n}=I_{n} \) si \( C^{n}=O_{n} \).
Jozseph Wildt International Contest, 2005
matrice \( B, C\in M_{n}(\mathbb{C}) \) astfel incat \( B+C=A \), \( B^{n}=I_{n} \) si \( C^{n}=O_{n} \).
Jozseph Wildt International Contest, 2005