Page 1 of 1

OJM Neamt 2009 subiectul III

Posted: Mon Mar 09, 2009 8:00 pm
by Tudor_C
Care este exponentul lui 2 in descompunerea in factori primi a produsului\( 1964 \cdot 1965 \cdot ........\cdot 2009 \)? In cate zerouri se termina acest produs?

Posted: Tue Mar 24, 2009 10:19 pm
by miruna.lazar
\( 1964\cdot1965\cdot1966\cdot...\cdot2009 \)

\( 1964=2^2\cdot 491 \)
\( 1966=2\cdot 983 \)
\( 1968=2^4\cdot123 \)
\( 1970=2\cdot985 \)
\( 1972=2^2\cdot493 \)
\( 1974=2\cdot987 \)
\( 1976=2^3\cdot247 \)
\( 1978=2\cdot989 \)
\( 1980=2^2\cdot495 \)
\( 1982=2\cdot991 \)
\( 1984=2^6\cdot31 \)
\( 1986=2\cdot993 \)
\( 1988=2^2\cdot497 \)
\( 1990=2\cdot995 \)
\( 1992=2^3\cdot249 \)
\( 1994=2\cdot997 \)
\( 1996=2^2\cdot499 \)
\( 1998=2\cdot999 \)
\( 2000=2^4\cdot125 \)
\( 2002=2\cdot1001 \)
\( 2004=2^2\cdot501 \)
\( 2006=2\cdot1003 \)
\( 2008=2^3\cdot251 \)

Exponentul lui 2 este 45 ( am innebunit ...mi-a luat o ora si jumatate)

\( 1965=5\cdot393 \)
\( 1970=5\cdot394 \)
\( 1975=5^2\cdot79 \)
\( 1980=5\cdot396 \)
\( 1985=5\cdot397 \)
\( 1990=5\cdot398 \)
\( 1995=5\cdot399 \)
\( 2000=5^3\cdot16 \)
\( 2005=5\cdot401 \)

Deci se termina in 12 zerouri.

Posted: Tue Mar 24, 2009 10:32 pm
by DrAGos Calinescu
Nu crezi ca te-ai complicat un pic...
Trebuie sa vezi puterea lui 5 din produs.
Sunt in total
-9 multiplii de 5;
-2 multiplii de 25;
-1 multiplu de 125.
Deci produsul se termina in 12 zero-uri.

Posted: Wed Mar 25, 2009 7:42 pm
by miruna.lazar
Nu erau 12? :oops:

Posted: Wed Mar 25, 2009 7:59 pm
by DrAGos Calinescu
Am scris eu gresit acum am modificat.