Produs cartezian
Posted: Wed Mar 11, 2009 8:45 pm
Se considera intervalele nevide \( I=\left(a,b\right) \) si \( \: J=\left(c,d\right) \). Sa se arate ca oricare ar fi perechea \( \left(x_{1},y_{1}\right)\in I\times J \) exista o pereche \( \left(x_{2},y_{2}\right)\in I\times J \), \( \left(x_{1},y_{1}\right)\neq\left(x_{2},y_{2}\right) \), cu proprietatea ca \( x_{1}\cdot y_{1}=x_{2}\cdot y_{2} \).
Marilena Stoica, Lavinia Savu, concursul "Gh. Lazar", 2004
Marilena Stoica, Lavinia Savu, concursul "Gh. Lazar", 2004