Page 1 of 1

Tetraedru regulat.

Posted: Thu Mar 12, 2009 1:56 am
by Marius Mainea
Fie ABCD un tetraedru regulat si M, N doua puncte situate pe suprafata lui.
Aratati ca \( m(\angle{MAN})\le 60^{\circ} \).

Concursul ,,Gh.Lazar'', 2005

Posted: Mon Dec 28, 2009 12:48 am
by Marius Mainea
Indicatie:

Problema se reduce la studiul cazului cand M si N sunt pe laturile triunghiului BDC.

Posted: Mon Dec 28, 2009 1:16 pm
by Virgil Nicula
Presupunem \( AB=1 \) si pentru \( M\in [CB] \) , \( N\in [CD] \) notam \( MB=x\le 1 \) si \( MD=y\le 1 \) .

Se observa ca \( AM^2=x^2-x+1 \) , \( AN^2=y^2-y+1 \) si \( MN^2=x^2+y^2-(x+y)+1-xy \) .

Asadar \( m\left(\angle MAN\right)\le 60^{\circ}\Longleftrightarrow \cos\left(\angle MAN\right)\ge \frac 12 \Longleftrightarrow AM^2+AN^2-MN^2\ge AM\cdot AN \) .

Problema se reduce la inegalitatea \( \{x,y\}\ \subset\ [0,1]\ \Longrightarrow\ 1+xy\ \ge\ \sqrt {\left(x^2-x+1\right)\left(y^2-y+1\right)} \) care este echivalenta

cu inegalitatea evidenta \( 3xy+(x+y)(1-x)(1-y)\ \ge\ 0 \) . Avem egalitate daca si numai daca \( x=0 \) si \( y=1 \) sau

\( x=1 \) si \( y=0 \) sau \( x=y=0 \) , adica \( M\equiv B \) si \( N\equiv C \) sau \( M\equiv C \) si \( N\equiv D \) sau \( M\equiv B \) si \( N\equiv D \) .

Posted: Tue Dec 29, 2009 11:12 pm
by Marius Mainea
Avem \( AM=DM>MN \) si \( AN=BN>MN \) si de aici MN este cea mai mica latura in triunghiul AMN deci \( \angle{MAN}\le 60^{\circ} \)

Posted: Tue Dec 29, 2009 11:22 pm
by Virgil Nicula
De ce \( AM=DM \) si \( AN=BN \) ?

Posted: Tue Dec 29, 2009 11:33 pm
by Marius Mainea
Pentru ca ABCD este regulat.

Posted: Wed Dec 30, 2009 12:00 am
by Virgil Nicula
OK. Uitasem. \( ABM\equiv DBM\Longrightarrow \underline{AM=DM} \) si \( m(\angle MND)\ge (\angle MCN)=60^{\circ}= \)

\( m(\angle BDN)\ge m(\angle MDN) \) \( \Longrightarrow \) \( m(\angle MND)\ge m(\angle MDN)\Longrightarrow \underline{DM\ge MN} \) .

Asadar \( AM\ge MN \) . Analog se arata ca \( AN\ge MN \) . Deci \( m(\angle MAN)\le 60^{\circ} \) .