Page 1 of 1

Functie integrabila

Posted: Sat Mar 14, 2009 10:52 pm
by Marius Dragoi
\( f:\mathbb{R}\rightarrow(0,\infty) \) integrabila astfel incat \( \int_0^1f(x)dx=\int_0^1f^2(x)dx \).
Aratati ca exista \( x_1, x_2 \in R \) astfel incat: \( \int_{x_1}^{x_2}\frac {dt}{f(t)}=1. \)

Shortlist ONM 2005

Posted: Sat Mar 21, 2009 1:34 pm
by Beniamin Bogosel
Din Cauchy pentru \( f \) si constanta 1 obtinem
\( \int_0^1 f^2(x)dx \int_0^1 1 dx \geq \left(\int_0^1 f dx\right)^2 \). Aplicam ipoteza si obtinem \( 1\geq \int_0^1 f(x)dx \).

Acum aplicam Cahuchy pentru \( \sqrt{f} \) si \( \frac{1}{\sqrt{f}} \) si avem
\( \int_0^1 \frac{1}{f(x)}dx \int_0^1 f(x)dx \geq 1 \).
Deci \( \int_0^1 \frac{1}{f(x)}dx \geq \frac{1}{\int_0^1 f(x)dx}\geq 1 \).

Acum luam functia \( g(t)=\int_0^t \frac{1}{f(x)}dx \) cu \( g(0)=0,\ g(1)\geq 1 \). Deci exista un \( t_0 \in [0,1] \) pentru care \( g(t_0)=1 \).