Page 1 of 1

Functie

Posted: Wed Mar 18, 2009 9:09 pm
by DrAGos Calinescu
Sa se arate ca singurul numar \( n\in\mathbb{N}^* \) pentru care exista functii \( f:\mathbb{R}\rightarrow\mathbb{R} \) cu proprietatea
\( f(x+f(y))=f(x)+y^n\forall x,y\in\mathbb{R}^* \) este \( n=1 \)
In acest caz sa se determine functiile care verifica ecuatia.

Posted: Wed Mar 18, 2009 9:30 pm
by Marius Mainea
In primul rand se arata ca f(0)=0

Apoi \( f(f(y))=y^n \) .
Punand f(y) in loc de y in relatie precum si aplicand f relatiei din enunt deducem ca \( [x+f(y)]^n=f(x)+f^n(y) \)

De aici \( f(x)=x^n \) apoi n=1 si \( f=\mathbb{1}_{\mathbb{R}} \)