Un patrulater inscriptibil.
Posted: Mon Mar 23, 2009 5:07 pm
\( \triangle\ ABC \ \ \wedge\ \ \left\|\ \begin{array}{ccc}
S\in BC & , & \frac {SB}{SC}=\left(\frac cb\right)^2\\\\\\\\
E\in (AC) & , & SE\ \parallel\ AB\\\\\\\\
F\in (AB) & , & SF\ \parallel\ AC\\\\\\\\
P\in BE & , & CP\ \parallel\ AB\\\\\\\\
R\in CF & , & BR\ \parallel\ AC\end{array}\ \right\|\ \Longrightarrow\ \left\{\ \begin{array}{cc}
\odot & A\in PR\\\\\\\\
\odot & \frac {AP}{AR}=\left(\frac bc\right)^2\\\\\\\\\\\\
\odot & \mathrm {BCPR\ este\ ciclic}\end{array} \) .
S\in BC & , & \frac {SB}{SC}=\left(\frac cb\right)^2\\\\\\\\
E\in (AC) & , & SE\ \parallel\ AB\\\\\\\\
F\in (AB) & , & SF\ \parallel\ AC\\\\\\\\
P\in BE & , & CP\ \parallel\ AB\\\\\\\\
R\in CF & , & BR\ \parallel\ AC\end{array}\ \right\|\ \Longrightarrow\ \left\{\ \begin{array}{cc}
\odot & A\in PR\\\\\\\\
\odot & \frac {AP}{AR}=\left(\frac bc\right)^2\\\\\\\\\\\\
\odot & \mathrm {BCPR\ este\ ciclic}\end{array} \) .