Page 1 of 1

Inegalitate cu un sir

Posted: Mon Mar 23, 2009 6:06 pm
by mihai++
Fie \( (a_n)n\geq1 \) cu proprietatea ca \( a_i+a_j\geq a_{i+j},\forall i,j\in\mathbb{N}^* \).
Demonstrati ca \( \sum^{n}_{1}\frac{a_k}{k}\geq a_n \).

Posted: Mon Mar 23, 2009 11:22 pm
by mumble
Iese prin inductie. Si iese frumos :wink:
Cazul \( n=1 \) e trivial. Presupunem afirmatia adevarata pentru toti \( k\leq n \) si o aratam pentru \( n+1. \)
Avem ca \( \sum_{i=1}^{k}\frac{a_i}{i}\geq a_k, \forall k=1,2,...,n. \)
Sumand toate aceste relatii obtinem
\( n\frac{a_1}{1}+(n-1)\frac{a_2}{2}+...+\frac{a_n}{n}\geq a_1+a_2+...+a_n \) (1)
Totodata observam ca
\( \frac{a_1}{1}+2\frac{a_2}{2}+...+n\frac{a_n}{n}=a_1+a_2+...+a_n \) (2)
(1) si (2) ne dau in continuare
\( \sum_{i=1}^{n}\frac{a_i}{i}\geq\frac{1}{n+1}\cdot 2\sum_{i=1}^{n}a_i \)
Acum e suficient sa mai vedem ca
\( 2\sum_{i=1}^{n}a_i=(a_1+a_n)+(a_2+a_{n-1})+...+(a_n+a_1)\geq na_{n+1} \)

Problema sigur am mai vazut-o undeva...