Page 1 of 1

O problema cu variabile aleatoare

Posted: Wed Mar 25, 2009 7:00 pm
by bogdanl_yex
Fie \( X_{1},X_{2},...,X_{n} \) variabile aleatoare independente cu repartitiile \( P(X_{i}=k)=pq^{k},i=1,2;k=0,1,2,3... \).Sa se arate ca \( P(X_{1}=k/X_{1}+X_{2}=n)= \frac{1}{n+1},k=1,n. \)

Posted: Wed Apr 15, 2009 9:16 pm
by Beniamin Bogosel
Se aplica formula probabilitatilor conditionate:
\( P(X_1=k | X_1+X_2=n )=\frac{P(X_1=k)P(X_2=n-k)}{P(X_1+X_2=n)}=\frac{pq^kpq^{n-k}}{\sum_{i=0}^n pq^ipq^{n-i}}=\frac{1}{n+1} \).