Page 1 of 1

Sir

Posted: Fri Mar 27, 2009 8:40 am
by alex2008
Se considera sirul \( (x_n)_{n\ge 1} \) definit prin \( x_1=x_2=1 \) si \( x_{n+1}=\sqrt{nx_n+x_{n-1}}\ ,\ (\forall)n\ge 2 \) . Determinati \( [x_n] \) , pentru \( n\ge 3 \) .


Constantin Caragea

Posted: Sun Mar 29, 2009 6:50 pm
by baleanuAR
Se arata inductiv ca \( n-2\leq x_n<n-1 \) pentru \( n\geq3 \) deci \( [x_n] \)=n-2 .