Page 1 of 1
Functie derivabila si marginita
Posted: Mon Apr 06, 2009 7:51 pm
by Marius Dragoi
\( f:[0, \infty)\to\mathbb{R} \) derivabila, cu derivata marginita. Daca \( \lim_{x\to\infty} \int_{0}^{x} {f(t) dt} \) exista si este finita, atunci \( \lim_{x\to\infty} \ f(x) = 0 \).
Posted: Tue Apr 07, 2009 8:03 pm
by Marius Mainea
Fie \( \epsilon>0 \) arbitrar si \( x_n\rightarrow\infty \).
Atunci \( \int_{x_n}^{x_n+\epsilon}f(t)dt\rightarrow 0\ (n\rightarrow\infty) \).
Folosind teorema de medie exista \( c_n\in(x_n,x_n+\epsilon) \) astfel incat \( \epsilon f(c_n)\rightarrow 0\ (n\rightarrow\infty) \) deci \( f(c_n)\rightarrow 0\ (n\rightarrow\infty) \).
Deasemenea din teorema lui Lagrange \( |f(x_n)-f(c_n)|\le (c_n-x_n)\cdot M \).
Asadar \( |f(x_n)|\le |f(x_n)-f(c_n)|+|f(c_n)|\le\epsilon\cdot M+|f(c_n)| \).
De aici rezulta concluzia problemei.