Page 1 of 1

Problema 4, lista scurta 2009

Posted: Sun Apr 19, 2009 8:48 pm
by alex2008
Se considera un sir \( (a_n)_{n\ge 1} \) de numere reale definit prin \( a_{n+1}=\frac{(1+a_n)}{(1+a_n^2)} \), pentru orice \( n\in \mathbb{N}^* \). Aratati ca daca \( a_1\in (0,2) \), atunci \( |a_{n+1}-1|\le \frac{1}{2^n} \), pentru orice \( n\in \mathbb{N}^* \).

Lucian Dragomir, Otelu-Rosu

Posted: Mon Apr 20, 2009 2:29 pm
by Marius Mainea
Inductie dupa n:

1) verificare, trivial.

2) \( |{a_{n+1}-1|=|\frac{a_n-a_n^2}{1+a_n^2}|\le\frac{a_n}{1+a_n^2}\cdot\frac{1}{2^{n-1}}\le \frac{1}{2^n} \)