Page 1 of 1

O.VII.30

Posted: Sun Apr 19, 2009 9:02 pm
by Andi Brojbeanu
In triunghiul \( ABC \) inaltimea \( AD(d\in BC) \) si mediana \( AA\prime(A\prime\in BC) \) impart unghiul \( BAC \) in trei parti egale.
a) Determinati masurile unghiurilor triunghiului.
b) Fie \( P\in (AA\prime) \). Daca \( BP\cap AC=\{B\prime\} \)\( ,CP\cap AB=\{C\prime\} \)\( , B\prime C\prime\cap AA\prime=\{T\} \)\( , B\prime C\prime \cap AD=\{S\} \), aratati ca \( B\prime C\prime\parallel BC. \) Daca in plus \( [ST] \) este linie mijlocie in triunghiul\( ADA\prime \), determinati valoarea raportului \( \frac{PA\prime}{AA\prime} \).

Probleme date la olimpiade, RMT 1/1998

Posted: Mon Apr 20, 2009 7:06 am
by salazar
a) in\( \triangle ABM \),\( AD \) bisectoare si inaltime\( \Longrightarrow \) triunghiul este isoscel,\( BD=DM \).
Aplicand \( T.B \) in \( \triangle ADC \),obtinem\( \frac{AD}{AC}=\frac{1}{2} \)
\( sin(\angle C)=\frac{1}{2}\Longrightarrow m(\angle C)=30. \)Obtinem apoi \( m(\angle A)=90, m(\angle B)=60 \).
-am notat M mijlocul laturii BC.
b) din \( T.CEVA \) avem ca\( \frac{BC^\prime}{C^\prime A}\cdot \frac{AB^\prime}{B^\prime C}\cdot \frac{CM}{MB}=1 \)
dar \( CM=MB \) \( \Longrightarrow \) \( \frac{BC^\prime}{C^\prime A}\cdot \frac{AB^\prime}{B^\prime C}=1 \),adica \( \frac{AC^\prime}{C^\prime B}=\frac{AB^\prime}{B^\prime C} \) si din \( T.Th \) \( \Longrightarrow \) \( B^\prime C^\prime \parallel BC \).
-din \( TB^\prime \parallel BC\Longrightarrow \)\( m(\angle TB^\prime A)=30,m(\angle B^\prime AT)=30\Longrightarrow m(\angle ATB^\prime)=120,AT=TB^\prime=TM\Longrightarrow TB^\prime=TM, m(\angle B^\prime TM)=180-m(\angle ATB^\prime)=180-120=60\Longrightarrow \triangle TBM \) echilateral.
\( \triangle B^\prime TP\sim \triangle BMP\Longrightarrow\frac{B^\prime T}{BM}=\frac{TP}{MP}
\)

\( B^\prime T=\frac{AM}{2} \), \( BM=\frac{BC}{2} \), \( AM=\frac{BC}{2}\Longrightarrow B^\prime T=\frac{BM}{2} \)
\( \frac{TP}{MP}=\frac{1}{2}\Longrightarrow TP=\frac{MP}{2} \).
\( AM=2(TP+PM)=2(\frac{PM}{2}+PM)=PM+2PM=3PM\Longrightarrow \frac{PM}{AM}=\frac{1}{3} \).