Page 1 of 1
Inegalitate in patru variabile
Posted: Mon Apr 20, 2009 11:14 pm
by alex2008
Fie \( a,b,c>0 \) si \( k\ge 8 \). Sa se demonstreze ca
\( \frac{a}{\sqrt{a^2+kbc}}+\frac{b}{\sqrt{b^2+kca}}+\frac{c}{\sqrt{c^2+kab}}\ge \frac{3}{\sqrt{k+1}}. \)
Posted: Tue Apr 21, 2009 1:12 am
by Marius Mainea
Notand \( f(k)=\sum {\frac{a}{\sqrt{a^2+kbc}}}-\frac{3}{\sqrt{k+1}} \) se observa ca k=8 este punct de minim pentru f, adica \( f(k)\ge f(8 ) \).
Asadar este suficient sa demonstram inegalitatea data in 2001 la OIM:
\( \sum {\frac{a}{\sqrt{a^2+8bc}}}\ge 1 \).
Posted: Thu Apr 23, 2009 6:20 pm
by Claudiu Mindrila
Marius Mainea wrote:
Asadar este suficient sa demonstram inegalitatea data in 2001 la OIM:
\( \sum {\frac{a}{\sqrt{a^2+8bc}}}\ge 1 \).
Conform inegalitatii Holder avem
\( \left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)\left(\sum a\left(a^{2}+8bc\right)\right)\ge\left(a+b+c\right)^{3} \), adica
\( \left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)^{2}\ge\frac{\left(a+b+c\right)^{3}}{a^{3}+b^{3}+c^{3}+24abc} \).
Problema revine acum la
\( \sum\frac{a}{\sqrt{a^{2}+8bc}}\ge1\Longleftrightarrow\left(\sum\frac{a}{\sqrt{a^{2}+8bc}}\right)^{2}\ge1\Longleftrightarrow\frac{\left(a+b+c\right)^{3}}{a^{3}+b^{3}+c^{3}+24abc}\ge1\Longleftrightarrow\sum a^{3}+6abc+3\sum ab\left(a+b\right)\ge\sum a^{3}+24abc, \) care este echivalenta cu binecunoscuta inegalitate
\( \sum ab\left(a+b\right)\ge6abc \).
Posted: Sun May 10, 2009 8:20 pm
by alex2008
Daca \( a,b,c>0 \) si \( k\ge 3 \) se poate demonstra ca :
\( \frac{a}{\sqrt{a^2+kbc}}+\frac{b}{\sqrt{b^2+kca}}+\frac{c}{\sqrt{c^2+kab}}< 2 \)
Posted: Thu May 21, 2009 9:28 pm
by alex2008
alex2008 wrote:Daca \( a,b,c>0 \) si \( k\ge 3 \) se poate demonstra ca :
\( \frac{a}{\sqrt{a^2+kbc}}+\frac{b}{\sqrt{b^2+kca}}+\frac{c}{\sqrt{c^2+kab}}< 2 \)
Sa observam ca
\( \sum_{cyc}\frac{a}{\sqrt{a^2+kbc}}\le \sum_{cyc}\frac{a}{\sqrt{a^2+3bc}} \)
Deci ar fi de ajuns sa demonstram inegalitatea pentru cazul
\( k=3 \) . Fiind simetrica si omogena sa presupunem ca
\( a\ge b\ge c \) si
\( abc=1 \) . Avem
\( \sum_{cyc}\frac{a}{\sqrt{a^2+3bc}}=\sum_{cyc}\sqrt{\frac{a^3}{a^3+3}} \) .
Fie
\( x=a^3 \ ,\ y=b^3 \ ,\ z=c^3 \Rightarrow xyz=1 \) si
\( x\ge y\ge z \) .
Avem ca
\( y+z\le 2x =\frac{2}{yz}\ , \ yz\le 1 \) si
\( \sqrt{\frac{x}{x+3}}< 1 \) .
Deci ar fi de ajuns sa demonstram ca :
\( \sqrt{\frac{y}{y+3}}+\sqrt{\frac{z}{z+3}}\le 1\Leftrightarrow \frac{y}{y+3}+\frac{z}{z+3}+2\sqrt{\frac{yz}{(y+3)(z+3)}}\le 1\Leftrightarrow 2\sqrt{\frac{yz}{(y+3)(z+3)}}\le \frac{9-yz}{(x+3)(z+3)}\Leftrightarrow 4yz(y+3)(z+3)\le (9-yz)^2 \) .
\(
4yz(y+3)(z+3)=4yz(yz+3(y+z)+9)\le 4yz(yz+\frac{6}{yz}+9)=4(yz)^2+24+36yz \le 64 \)
In acelasi timp
\( yz\le 1\Leftrightarrow 9-yz\ge 8 \Leftrightarrow (9-yz)^2\ge 64 \) , deci inegalitatea e demonstrata .