Page 1 of 1
Matrice cu adjuncta 2-potenta
Posted: Wed Apr 22, 2009 12:54 am
by Marius Mainea
Daca A este o matrice de ordinul n cu elemente numere complexe si \( AB-BA=A^{\ast} \), atunci \( (A^{\ast})^2=O_n \).
C. Lupu, Shortlist 2009
Posted: Fri Apr 24, 2009 9:24 pm
by Marius Mainea
Indicatie: \( \tr[(A^{\ast})^k]=0 \), \( (\forall)k\in\mathbb{N^{\ast}} \).
Matrice 2-potenta
Posted: Fri Apr 24, 2009 11:04 pm
by Theodor Munteanu
\( \tr(AB - BA) = 0 \Rightarrow \tr(A*) = 0 \).
Daca \( rang A\leq n-2 \), atunci \( A*=0 \), de unde reiese imediat concluzia.
Daca \( rang A = n-1 \), atunci \( rang A*=1 \), adica \( A*={\rm XY}^{\rm t}, X, Y \in M_{n,1} (C). \)
De aici \( (A*)^{\rm 2}=XY^{\rm t}XY^{\rm t}=X(Y^{\rm t}X)Y^{\rm t}=XaY^{\rm t}=aXY^{\rm t}=aA*. \)
Deci \( \tr((A*)^{\rm 2})=0 \Rightarrow \tr((A*)^{\rm k})=0,\forall k \in N*. \)
Fie \( \lambda _{\rm 1} ,\lambda _{\rm 2} ,...,\lambda _{\rm n} \)valorile proprii ale lui A*.
Avem sistemul \( \left\{ {\begin{array}
{\lambda _{\rm 1} + \lambda _{\rm 2} + ... + \lambda _{\rm n} = 0 \\
{\lambda _1^2 + \lambda _2^2 + ... + \lambda _n^2 = 0} \\ }
{........} \\
{\lambda _1^m + \lambda _2^m + ... + \lambda _n^m = 0} \\
\end{array}} \right. \), \( \forall m \in N*, \) deci valorile proprii sunt nule de unde reiese imediat concluzia cu formulele lui Newton.