Concursul "Ion Ciolac" problema 2
Posted: Sat Apr 25, 2009 1:25 pm
a) Demonstrati ca \( \sqrt[n]{n}<\sqrt{2},\forall n\in\mathbb{N},n\ge 5 \).
b) Demonstrati ca \( x_n<n\cdot \log_n{2},\forall n\in\mathbb{N},n\ge 5, \) unde \( x_n={{{{{{\sqrt[n]{n}}^{\sqrt[n]{n}}}^{\sqrt[n]{n}}^{.}}^{.}}^{\sqrt[n]{n}}}} \), numarul radicalilor fiind n.
b) Demonstrati ca \( x_n<n\cdot \log_n{2},\forall n\in\mathbb{N},n\ge 5, \) unde \( x_n={{{{{{\sqrt[n]{n}}^{\sqrt[n]{n}}}^{\sqrt[n]{n}}^{.}}^{.}}^{\sqrt[n]{n}}}} \), numarul radicalilor fiind n.