Page 1 of 1
O problema de medie interesanta
Posted: Thu Apr 30, 2009 8:48 pm
by Cezar Lupu
Fie \( f:[a, b]\to\mathbb{R} \) o functie convexa si continua in \( a \) si \( b \). Sa se arate ca exista \( c\in (a, b) \) astfel incat
\( \int_a^bf(x)dx=\frac{(b-a)}{4}f\left(\frac{a+b}{2}\right)+\frac{3}{4}(b-a)f(c). \)
Tudorel Lupu, Shortlist ONM 2004
Posted: Sat May 02, 2009 12:58 am
by Marius Mainea
Folosim inegalitatile Hermite-Hadamard:
Daca \( f:[a,b]\rightarrow\mathbb{R} \) este o functie continua si convexa , atunci \( f(\frac{a+b}{2})\le\frac{1}{b-a}\int_a^bf(x)dx\le\frac{f(a)+f(b)}{2} \)
Asadar
\( \int_a^bf(x)dx\ge \frac{b-a}{4}f(\frac{a+b}{2})+\frac{3(b-a)}{4}f(\frac{a+b}{2}) \)
Pentru cealalta inegalitate (Hadamard)
\( \int_a^bf(x)dx=\int_a^{\frac{3a+b}{4}}f(x)dx+\int_{\frac{3a+b}{4}}^{\frac{a+b}{2}}f(x)dx+\int_{\frac{a+b}{2}}^{\frac{a+3b}{4}}f(x)dx+\int_{\frac{a+3b}{4}}^bf(x)dx\le\frac{b-a}{8}\(f(a)+2f(\frac{3a+b}{4})+2f(\frac{a+b}{2})+2f(\frac{a+3b}{4})+f(b)\)\le \frac{b-a}{4}f(\frac{a+b}{2})+\frac{3}{4}(b-a)f(x_M) \) , unde \( x_M \) este preimaginea maximului lui f pe [a,b] (f este continua pe [a,b]).
Aplicand proprietatea lui Darboux pe intervalul \( [\frac{a+b}{2},x_M] \) rezulta concluzia.