Page 1 of 1
n variabile intr-un interval
Posted: Mon May 04, 2009 10:30 am
by alex2008
Fie \( x_1,x_2,...,x_n\in \mathbb{R}\ ,\ n\ge 2 \) si fie \( a=x_1+x_2+...+x_n \). Daca \( a\ge 0 \) si \( x_1^2+x_2^2+...+x_n^2\le \frac{a^2}{n-1} \) sa se demonstreze ca oricare ar fi \( i\in\{1,2,...,n\} \) avem \( x_i\in \left[0,\frac{2a}{n}\right] \).
Posted: Mon May 04, 2009 9:07 pm
by Mateescu Constantin
Folosind inegalitatea Cauchy-Schwarz avem:
\( (a-x_1)^{2}\leq(n-1)(x_2^{2}+x_3^{2}+\dots+x_n^{2})\leq(n-1)\left(\frac{a^{2}}{n-1}-x_1^{2}\right). \)
Astfel, \( a^{2}-2ax_1+x_1^{2}\leq a^{2}-(n-1)x_1^{2} \)
\( \Longleftrightarrow x_1\left(x_1-\frac{2a}{n}\right)\leq 0 \), de unde rezulta concluzia.