Inegalitate in trei variabile subunitare
Posted: Thu May 14, 2009 7:39 am
Fie \( x,y,z\in (0,1) \) . Sa se demonstreze ca :
\( \frac{3 + xy}{1 - z} + \frac{3 + yz}{1 - x} + \frac{3 + zx}{1 - y}\ge 4\left(\frac{x + y}{1 - xy} + \frac{y + z}{1 - yz} + \frac{z + x}{1 - zx}\right) \)
Virgil Nicula
\( \frac{3 + xy}{1 - z} + \frac{3 + yz}{1 - x} + \frac{3 + zx}{1 - y}\ge 4\left(\frac{x + y}{1 - xy} + \frac{y + z}{1 - yz} + \frac{z + x}{1 - zx}\right) \)
Virgil Nicula