Page 1 of 1
Limita unei integrale
Posted: Wed May 20, 2009 8:20 pm
by Bogdan Cebere
Fie \( f:R \to (0,\infty) \) o functie integrabila a.i. \( \lim_{x \to \infty} {\int^x_0 f(t) dt}= \infty \). Sa se arate ca \( \lim_{x \to \infty} {\frac{1}{x} \int^x_0{(x-t)f(t)dt}}=\infty \).
Gabriel Dospinescu
Posted: Mon Feb 08, 2010 7:18 pm
by Laurentiu Tucaa
Aplicand l'Hospital rezulta ca \( \lim_{x\to\infty} \frac{\int_0^x (x-t)f(t)dt}{x}=\lim_{x\to\infty} xf(x)+F(x)-xf(x)=\lim_{x\to\infty} F(x)=\infty \),unde \( F(x)=\int_0^x f(t)dt \).
Posted: Mon Feb 08, 2010 7:45 pm
by Marius Mainea
Atentie,f este doar integrabila!