Page 1 of 1

Inegalitate cu numere complexe

Posted: Fri May 22, 2009 2:11 pm
by opincariumihai
Aratati ca oricare ar fi numerele complexe a, b, c are loc inegalitatea
\( |a|+|b|+|c|\leq|a+b+c|+|a-b|+|b-c|+|c-a| \)

Mihai Opincariu G.M.B. 2000

Posted: Fri May 22, 2009 5:33 pm
by Mateescu Constantin
Folosind inegalitatile cunoscute cu modul avem:
\( |a+b|+|a-b|\ge |a+b+a-b|=2|a| \)
\( |a+b|+|a-b|\ge |a+b-(a-b)|=2|b| \)

\( \Longrightarrow |a+b|+|a-b|\ge |a|+|b| \)

Sumand si inegalitatile analoage obtinem:

\( |a+b|+|b+c|+|c+a|+|a-b|+|b-c|+|c-a|\ge 2(|a|+|b|+|c|) \ (1) \)

Din inegalitatea lui Hlawka avem:

\( |a+b+c|+|a|+|b|+|c|\ge |a+b|+|b+c|+|c+a|\ (2) \)

Adunand relatiile \( (1) \) si \( (2) \) obtinem concluzia.