Gh. Titeica 2009, echipe IX-X, problema 1
Posted: Fri May 22, 2009 8:01 pm
Daca \( x_1,x_2,...,x_n\in\(0,\infty\) \) si \( n\in\mathbb{N},n\geq 2 \) demonstrati ca:
\( \sqrt{x_1}+\sqrt[4]{x_2}+\sqrt[6]{x_3}+...+\sqrt[2n]{x_n}>\sqrt[n(n+1)]{x_1x_2...x_n}. \)
GM 2/2003
\( \sqrt{x_1}+\sqrt[4]{x_2}+\sqrt[6]{x_3}+...+\sqrt[2n]{x_n}>\sqrt[n(n+1)]{x_1x_2...x_n}. \)
GM 2/2003