Page 1 of 1

Inegalitate conditionata

Posted: Fri May 22, 2009 9:33 pm
by opincariumihai
Demonstrati ca pentru orice numere reale nenegative a, b, c cu suma 1 are loc inegalitatea
\( (1+a)(1+b)(1+c)\geq(3a+b)(3b+c)(3c+a) \).

Mihai Opincariu G.M.B. 1999

Posted: Sat May 23, 2009 10:01 am
by Marius Mainea
Inlocuind pe 1 cu a+b+c, inegalitatea devine

\( 2\sum_{cyc}a^3+4\sum_{cyc}a^2b\ge 2\sum_{cyc}ab^2+12abc \) care este adevarata.

Posted: Sat May 23, 2009 11:52 am
by opincariumihai
Este o solutie cam laborioasa si calculatorie pentru un elev de clasa a VIII-a , dar e bine .
Mai elegant se pleaca de la o inegalitate cunoscuta \( \frac{x^2}{y}\geq2x-y \) si punand \( x=1+a,\ y=1+c \) si folosind \( a+b+c=1 \) se obtine \( (1+a)^2\geq(1+c)(3a+b) \) si scriind inegalitatile analoage si inmultindu-le membru cu membru se obtine concluzia.