Page 1 of 1

Inegalitate mai "tare" ca Nesbitt

Posted: Sun Jun 07, 2009 4:32 pm
by maxim bogdan
Fie \( a,b,c \) trei numere reale pozitive. Demonstrati ca:

\( \frac{a}{\sqrt{2(b^2+c^2)}}+\frac{b}{\sqrt{2(c^2+a^2)}}+\frac{c}{\sqrt{2(a^2+b^2)}}\geq\frac{3}{2}. \)

Posted: Mon Jun 08, 2009 1:43 am
by Marius Mainea
Vezi \( a=\frac{1}{\sqrt{15}} \) , \( b=c=1 \)

Se poate arata ca \( \sum \sqrt{\frac{x}{y+z}}>2 \) si nimic mai mult.

IMO 1989 Longlist - Problema 68

Posted: Mon Jun 08, 2009 10:46 am
by maxim bogdan
In IMO Compendium (IMO 1989 Longlist - Problema 68, pag 239) apare urmatoare inegalitate propusa de Mongolia:

Daca \( 0<k\leq 1 \) si \( a_{i}, \ i=\overline{1,n} \) sunt numere reale pozitive atunci "are loc" inegalitatea:

\( \left (\frac{a_{1}}{a_{2}+a_{3}+\dots+a_{n}}\right )^k+\dots +\left (\frac{a_{n}}{a_{1}+a_{2}+\dots+a_{n-1}}\right )^k\geq\frac{n}{(n-1)^{k}}. \)

Pentru \( n=3 \ \wedge\ k=\frac{1}{2} \) si \( a_{1}=a^2, \ a_{2}=b^2, \ a_{3}=c^2 \) se obtine inegalitatea propusa, care s-a dovedit a fi gresita. Deci inegalitatea din IMO Compendium e gresita. In schimb aceasta inegalitate este adevarata daca \( k\geq 1 \) (se aplica inegalitatile Power Mean si apoi Cauchy-Schwarz). Multumesc mult pentru contraexemplu.

Posted: Tue Jun 09, 2009 9:32 am
by Mateescu Constantin
Iata o inegalitate mai tare decat cea a lui Nesbitt:

\( \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge \frac{13}{6}-\frac{2\sum ab}{3\sum a^2} \), \( a,\ b,\ c>0 \)

Posted: Wed Jun 10, 2009 5:07 pm
by Mateescu Constantin
Scriem inegalitatea ca \( \sum\frac{a}{b+c}-\frac{3}{2}\ge \frac{2}{3}\left\(1-\frac{ab+bc+ca}{a^2+b^2+c^2}\right\) \)

Avem \( LHS=\sum\left\(\frac{a}{b+c}-\frac{1}{2}\right\)=\sum\frac{(a-b)+(a-c)}{2(b+c)}=\sum\frac{a-b}{2(b+c)}+\sum\frac{b-a}{2(c+a)}=\sum\frac{(a-b)^2}{2(b+c)(c+a)} \)

si

\( RHS=\sum\frac{(a-b)^2}{3(a^2+b^2+c^2)} \)

Cu acestea inegalitatea devine \( \sum(a-b)^2\left\[\frac{1}{2(b+c)(c+a)}-\frac{1}{3(a^2+b^2+c^2)}\right\]\ge 0 \), adevarat.

Posted: Thu Jun 11, 2009 11:20 am
by alex2008
Mateescu Constantin wrote:

Cu acestea inegalitatea devine \( \sum(a-b)^2\left\[\frac{1}{2(b+c)(c+a)}-\frac{1}{3(a^2+b^2+c^2)}\right\]\ge 0 \), adevarat.
Aceasta inegalitate este adevarata deoarece :

\( 3(a^2 + b^2 + c^2) - 2(a + c)(b + c) = (a + b - c)^2 + 2(a - b)^2 \)